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LElTER TO THE EDlTOR 
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Abstract. We consider a variant of directed percolation in which the set of nodes is itself 
dependent on the pragresss of the percolation process. For the mean-field model studied, 
the system is driven to its critical point from a broad range of initial conditions. An 
advantage of the model is its explicit and easy solvability. 

The notion of self-organized criticality has the potential to explain a variety of natural 
phenomena. The first striking metaphor used was the sandpile [1 ,2 ]  and other more 
analytically tractable models have also been proposed [3]. In this letter we give a 
model that has the virtue of being extremely simple. It is a mean-field model and 
everything can be done analytically (see [4] but note that this is a mean-field theory 
of the sandpile and is quite different from ours). We do cite computer studies, but 
mainly to show that fluctuations do not overwhelm the mean-field predictions. Since 
there is no spatial dependence, the criticality is expressed through power law decay 
of the order parameter. 

The model is a variant of directed percolation on a finite set in which bonds connect 
all elements of the set. It is convenient and also suitable, for the variant we introduce, 
to phrase the model in epidemiological terms, and the underlying disease has been 
termed percolitis [SI. The variant to be introduced here will be called population 
modulating percolitis (PMP) and can show self-organized criticality as well as other 
epidemic properties. The appearance of self-organized criticality in systems equivalent 
to epidemiological models has been noted before, [6 ,7 ]  and in these works will be 
found discussions providing a broader perspective for the present letter. 

Let X be a collection of N objects and consider an infinite set of labelled copies, 
N,, f = 0,1,. . , with directed bonds from every element of N, to every element of M8+,.  
These bonds are occupied with probability p.  It is convenient to define IO, 1)-valued 
bond occupation variables A,,, with p E N, and a E N,,,. The usual directed percolation 
question in terms of this model is the finding of a path of occupied bonds from a point 
in No to points in N, for arbitrarily large f. Because N is finite this cannot happen 
and in this model the phase transition is an asymptotic property. Let p = x/ N. Then 
for x < 1 paths are O(1) for N+ m, while for x >  1 path length can grow unboundedly 
(like eN.constant ) for N - m .  In the epidemic picture the starting point in No is a sick 
individual, and an occupied bond (A,,, = 1) corresponds to disease transmission from 

to (I from time step I to time step I +  i. (For A,,, = i ,  if ,i3 was sick ai i, then a wiii 
be sick at I+ 1.) It is useful to define another set of (0, 1)-valued variables ~ ~ ( 1 )  which 
take the value 1 if a EN, is sick, 0 otherwise. Progress of the disease is then given by 

u-( f+  1)  = 1 - JJ (1  - A p = p , ( f ) ) .  (1) 
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We further define p ( t ) = ( Z  u-(f)/N). Because the As are all independent it is clear 
from (1) that 

p(t+l)=l-e-*p( '] .  (2) 

(For finite N, 1 - p ( t +  1) is given by ( 1  -XI N)Np"'.) Forgiven x, the equilibrium value 
of p, p ( x ) ,  satisfies 

(3)  

which has a strictly positive solution only for x> 1, indicating that the critical point 
is at xc= 1. 

The characteristic critical property for our purposes will be the relaxation of p ( f )  
top. Linearization of (2) ( v ( t ) = p ( t ) - p )  yields 

&qx) = 1 - e - x m  

v (  t + I )  = x e-""( t )  (4) 

so that we find cl, = -l/log(x eC') to be the relaxation time or 'correlation length' for 
this problem. For all (positive) x #  1 ,  x e-"'< 1, and for x+x,, tI1+m. Away from 
criticality, relaxation is thus exponentially fast. At x = 1 we retain quadratic terms in 
p ( t )  (=?(I)), since j(I)=O, to get 

which has the (approximate) solution 

with fo  arbitrary. This time dependence is a characteristic manifestation of criticality 
in this system. 

In previous publications [S, 81 the time steps were a day or a week and each sick 
individual was to have come into contact with every individual for potential disease 
transmission. In the present model, each time step is a single generation and we have 
in mind that successive copies of K are different people, K,+, comprising the descen- 
dants of K,. The new feature is that the size of K will he allowed to vary and that the 
size of A"!,, will depend on the number of sick individuals in K,. The picture is that 
percolitis is a childhood disease and affects the fertility of stricken individuals. In 
particular we will assume that couples that have both had percolitis have slightly fewer 
offspring. Other models are certainly possible and at the end of this letter we will 
mention rules that simulate aspects of sickle cell anaemia. 

The full PMP model is defined as follows: an initial population N(0) and an initial 
number of sick individuals S(0) are given. The population at time 1 (N(1)) is obtained 
by a series of random processes. N will always be even and we first do a random 
pairing of the elements of KO to produce NI2 couples. By a second random process 
we ascribe to each couple 0, 2 or 4 descendants. For couples in which zero or one 
partner was sick the mean number of descendants is 2. For couples in which both 
partners were sick the probabilities are adjusted to put the mean slightly below 2. This 
produces NI. Next, each of the N (  1 )  individuals (in NI) has the opportunity to contract 
percolitis from the S(0) sick individuals of KO. This random process is described by 
(1 )  with PE&, n E K ,  and f =O. The entire procedure continues with alternate 
determination of N(f) and ( S ( f ) .  
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Mean-field equations for this process are easy to derive. Let p = 1/M; scaling by 
‘N’ (i.e. our previously defined x = p N )  is inappropriate since N varies in time. The 
expectation of (1) yields 

where u ( t ) =  N ( t ) /  M and we have ignored order 1/M corrections. We will also freely 
replace random variables by their expectations. The check that fluctuations do not 
alter our conclusions was made numerically and will be reported below. For the 
population size, N( t ) ,  if percolitis were absent its expected value would be the same 
on successive time steps, ( N ( t +  1)) =(N( f ) ) .  For double-percolitis couples there will 
be reduced fertility so that there will be an effective reduction proportional to p ( t ) ’ .  
For (the expectation of) u ( t + l )  we therefore have 

u ( t + l ) =  u ( t ) [ l  - a ~ ( t ) ~ ]  (8) 

where a is a proportionality constant reflecting the percolitis induced fertility defect. 
Equations (7) and (8) can be iterated numerically and it is found that for small 

enough a the system converges to p = O ,  u = l .  Moreover, that convergence is not 
exponential and has the inverse power law characteristic of critical percolitis. 

Before analysing the equations we provide a simple explanation of what is happen- 
ing. For large initial population ( N o > >  M )  percolitis is rampant. v ( 0 )  ( > > l )  acts like 
the ‘x’ of simple percolitis and E (  v ( 0 ) )  is near unity. Therefore most couples are 
percolitis doubles and M (  1 )  gradually diminishes. However, the reduced population 
has fewer double-percolitis couples so that the rate of diminution is itself reduced. In 
this process the population gradually tends toward M. the value at which the disease 
itself could no longer be sustained. As one approaches M, however, the number of 
double-percolitis couples is severely reduced ( - p 2 )  so that, as we shall see, the result 
is the same inverse power law that characterizes critical (x = 1 )  simple percolitis. 

For (7) and (8 ) ,  all points ( p ,  U) with p = O  are fixed points and there are no others. 
For v >  1 these are not stable (as for p = O  for x >  l ) ,  while (0, U )  is definitely an 
attractor for v <  1. The question of interest is whether (0, I )  has a non-trivial basin of 
attraction and if so how that point is approached. Writing v ( t )  = 1 + S ( t )  and expanding 
up to terms quadratic in p and 6, ( 7 )  and (8) yield 

p ’ =  p + p S  - f p 2  S ‘ =  6 - a p 2  (9) 

where unprimed quantities are for t and primed for t + 1. Bearing in mind the irrelevance 
of the time scale and using the smallness of p and 6; (9) becomes 

(10) L 2  p = - a p .  2 p = pS - z p  

-R = R D - f R 2  -D= -aR2 (11) 

The forms p = R / ( t +  to) and 6 = D / ( t  + to) satisfy (10) provided R and D satisfy 

which implies for non-trivial (i.e. >0) R 

1 
( 1 2 )  R =z (1 *-). 

For a the attempted form does not provide a real solution, but for a <& we get 
the critical behaviour that we seek. The population approaches M, the disease nearly 
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disappears, the rate of approach to M is slowed yet further and the disease is further 
reduced; and so it goes. The path actually followed by the asymptotic solution is given 
by the positive root in (12). The negative root provides the separatrix: Even for a <A, 
if you begin with U too small, the solution tends to Y < 1. By numerical means we 
determined the actual position of the separatrix and (for a = 03/16) it lies close to its 
linear approximant. Because the time is discrete one could in principle have paths 
crossing the separatrix (in effect, not have a separatrix) but this did not seem to happen 
(and the occurrence of this phenomenon at large p or U - 1  would not affect our 
conclusions). 

Besides the exact solution given above to (lo), the changing character, as a function 
of a, of the fixed point (p ,  8 )  = (0,O) can be seen by examining the equation dS/dp = 
- -ap / (6 -p /2 ) .  The phase portrait (but not the time dependence!) is given by the 
equations dp/ds = 6 -p/Z, d8/ds = -@p, where s is a new parameter. Standard stability 
analysis shows that for a <A one trajectory goes info (0, 0), one out (corresponding 
to the roles of asymptote and separatrix, seen above). For a>& the trajectories are 
spirals tending to 0. However, in the original time variable these spirals never get past 
their first loop since it takes infinite time ( 1 )  to reach p = 0. 

This power law time dependence demonstrates self-organized criticality in our 
system. To see the phenomenon graphically, and also to be sure that fluctuations do 
not vitiate the equations we derived for the average quantities p and v, we performed 
computer simulations of PMP. The results are shown in figure 1. We plot both N ( r )  
and S(r). Even for the relatively small M used (4000) the system settles into power 
law decline. We also did a straight line fit to (the noisy) 1/S( I)  and show this in figure 
2. The slope gives reasonable agreement with the theory of (9). For the (I we used 
(0.1/16), (R)+roo, is 77.95 while the effective value obtained from figure 2 is 79.5. 
(Another run gave 90, so 79.5 is coincidentally close.) 

"t \ 1 

Figure 1. N(r) and .%I). For this simulation M (=l /p)  was taken to be 4000 and CL was 
0.1/16. The level of noisiness in the population variation was kept fairly IOW (although its 
randomness is evident in the figure) so as to get reliable results even for fairly small overall 
population. 
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Figure 2. l/S(l) (from the data of figure I )  and its fit (dotted line) 

In the pure percolitis model, criticality (in the sense of power law decay) is surely 
not generic. However, when the ‘disease’ influences its own propagation the feedback 
is able to drive the system precisely to the critical point. For a different kind of feedback, 
one in which the fertility defect was linear in p, one would not get criticality. For the 
model that we do define, a small (linear) deviation from the quadratic p dependence 
cannot occur; this restriction is analogous to the constraints imposed by symmetries 
in other contexts. 

By virtue of its simplicity, this model allows examination of general ideas on 
self-organized criticality. Of course there are aspects that are beyond its scope, for 
example the relation of spatial features to time features and to Iff noise. Our model 
has no space. One of the important general ideas that can be studied in our model is 
the way linear response theory makes or does not make its appearance. In its simplest 
form, linear response.theory would predict exponential decay. How does our model 
depart from that simplest form? One way to look at this is to say that the coefficients 
in the linear response theory themselves become functions of the system variables. 
This viewpoint is consistent with the intuitive discussion above in which the population 
changes are pictures as gradually modifying the percolitis process, which effectively 
means a time dependent ‘x.’ A second way is to recall the power law (in time) decay 
of correlations in hydrodynamics; these arise because of an infinite number of modes 
with vanishing energy differences. It is likely that the same situation exists here as 
well. In studies of ordinary percolitis it is found [9] that the transfer matrix (time 
evolution operator) has an infinity (as N -  00) of eigenvalues approaching 1. The PMP 
transfer matrix is a more elaborate object, but if one imagines it used for time evolution, 
then our demonstration of a power law dropoff shows that it necessarily has a zero 
mass gap [6,7,10]. 

There is a known physical example where modified directed percolation drives the 
effective percolation parameter toward its critical point. This is the stochastic stimulated 
star formation model described in [ l l ]  and [E]. One defines there an effective 
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percolation parameter for the probability that a supernova explosion in one region of 
a galaxy induces star formation a few hundred light years away. That parameter, in 
turn, is influenced by the recent and, to some extent, local, star formation history of 
the galaxy. This feedback process drives the system to an effective parameter just n bit 
above the percolation threshold. (This proximity to the critical point, by the way, 
accounts for tbe beautiful spiral arms seen in many disc galaxies.) This system does 
not quite exhibit self-organized criticality although the feedback modified phase transi- 
tion does show some peculiar features. 

of immunity subsequent to a disease episode. (In the neuronal model [I31 this corre- 
sponds to post-activation refractoriness.) For the mean-field percolitis described here, 
immunity does not lead to self-organized criticality (even with protracted immune 
periods) because of the long-range interactions. However, with finite-dimensional 
directed percolation (e.g. (1 + 1)- or (2+ 1)-dimensional) and long term, perhaps power 
law, immunity, we conjecture that the system would be driven to criticality. 

The following example is analogous to the situation for sickle cell anaemia, where 
an individual homozygous in the sickle cell allele does not survive but those heterozy- 
gous for this allele have an unusually high resistance to malaria. The analogy is not 
complete because for the percolitis model the probability of falling 'victim' to the 
disease is independent of the individual's parentage. 

Let the reduced fertility of a double again be described by LI. For a couple with 
exactly one percolitis partner let the enhanced fertility (or survival of offspring) be 
described by a parameter p. The mean-field equations become 

teiiiij peiio:iiis iXij feedback can be by aiiowing a degree 

P ( f + l ) =  I-e-P'"'''' 

v ( t + l ) =  v(t)[ i  -ap ( r ) '+kkdt ) ( l  - P ( ~ ) ) I .  
For equilibrium, the second equation implies p =  l-a/p. Inserting this in the first 

thus uM. This is not a critical phenomenon, but illustrates another aspect of the model. 
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